+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Part 295 of 365

๐Ÿ“˜ Decorators: Functional Approach

Master decorators: functional approach in Python with practical examples, best practices, and real-world applications ๐Ÿš€

๐Ÿ’ŽAdvanced
25 min read

Prerequisites

  • Basic understanding of programming concepts ๐Ÿ“
  • Python installation (3.8+) ๐Ÿ
  • VS Code or preferred IDE ๐Ÿ’ป

What you'll learn

  • Understand the concept fundamentals ๐ŸŽฏ
  • Apply the concept in real projects ๐Ÿ—๏ธ
  • Debug common issues ๐Ÿ›
  • Write clean, Pythonic code โœจ

๐ŸŽฏ Introduction

Welcome to the magical world of Python decorators! ๐ŸŽ‰ In this tutorial, weโ€™ll explore how decorators can transform your functions with a functional programming approach.

Have you ever wanted to add superpowers to your functions without modifying their code? ๐Ÿฆธโ€โ™‚๏ธ Thatโ€™s exactly what decorators do! Theyโ€™re like gift wrappers ๐ŸŽ that add extra functionality to your functions, making them more powerful, reusable, and elegant.

By the end of this tutorial, youโ€™ll be creating your own decorators with confidence and applying functional programming principles like a pro! Letโ€™s dive in! ๐ŸŠโ€โ™‚๏ธ

๐Ÿ“š Understanding Decorators

๐Ÿค” What are Decorators?

Decorators are like magical enhancements ๐Ÿช„ that you can apply to functions. Think of them as Instagram filters for your code - they take your original function and add extra features without changing its core purpose!

In Python terms, decorators are higher-order functions that take a function as input and return an enhanced version of that function. This means you can:

  • โœจ Add logging to any function
  • ๐Ÿš€ Measure performance automatically
  • ๐Ÿ›ก๏ธ Validate inputs before processing
  • ๐Ÿ”’ Add authentication checks
  • โฐ Implement caching for expensive operations

๐Ÿ’ก Why Use the Functional Approach?

Hereโ€™s why the functional approach to decorators is powerful:

  1. Pure Functions ๐Ÿ”’: Create decorators without side effects
  2. Composability ๐Ÿ—๏ธ: Chain multiple decorators easily
  3. Immutability ๐Ÿ“–: Preserve original function behavior
  4. Testability ๐Ÿงช: Easy to test in isolation
  5. Reusability โ™ป๏ธ: Apply the same decorator to many functions

Real-world example: Imagine building a web API ๐ŸŒ. With decorators, you can add authentication, logging, and rate limiting to any endpoint with just a simple @ symbol!

๐Ÿ”ง Basic Syntax and Usage

๐Ÿ“ Simple Decorator Example

Letโ€™s start with a friendly example:

# ๐Ÿ‘‹ Hello, decorators!
def greet_decorator(func):
    """A decorator that adds a greeting! ๐ŸŽ‰"""
    def wrapper(*args, **kwargs):
        print("๐ŸŒŸ Welcome! Let me help you with that...")
        result = func(*args, **kwargs)  # ๐ŸŽฏ Call original function
        print("โœจ All done! Have a great day!")
        return result
    return wrapper

# ๐ŸŽจ Using the decorator
@greet_decorator
def calculate_sum(a, b):
    """Calculate the sum of two numbers ๐Ÿ”ข"""
    result = a + b
    print(f"๐Ÿ“Š The sum of {a} and {b} is {result}")
    return result

# ๐ŸŽฎ Let's try it!
calculate_sum(5, 3)

๐Ÿ’ก Explanation: The @greet_decorator syntax is syntactic sugar for calculate_sum = greet_decorator(calculate_sum). Itโ€™s Pythonโ€™s way of making decorators beautiful! ๐ŸŽจ

๐ŸŽฏ Common Decorator Patterns

Here are patterns youโ€™ll use daily:

# ๐Ÿ—๏ธ Pattern 1: Timing decorator
import time
from functools import wraps

def time_it(func):
    """Measure function execution time โฑ๏ธ"""
    @wraps(func)  # ๐Ÿ›ก๏ธ Preserve function metadata
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        print(f"โฐ {func.__name__} took {end - start:.4f} seconds")
        return result
    return wrapper

# ๐ŸŽจ Pattern 2: Memoization decorator
def memoize(func):
    """Cache function results for efficiency ๐Ÿš€"""
    cache = {}
    
    @wraps(func)
    def wrapper(*args):
        if args in cache:
            print(f"๐Ÿ’ซ Found in cache!")
            return cache[args]
        
        result = func(*args)
        cache[args] = result
        return result
    return wrapper

# ๐Ÿ”„ Pattern 3: Decorator with parameters
def repeat(times):
    """Repeat function execution ๐Ÿ”„"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            for i in range(times):
                print(f"๐ŸŽฏ Attempt {i + 1}/{times}")
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

๐Ÿ’ก Practical Examples

๐Ÿ›’ Example 1: E-commerce Order Processing

Letโ€™s build something real:

# ๐Ÿ›๏ธ E-commerce order processing with decorators
from functools import wraps
import json
from datetime import datetime

def log_transaction(func):
    """Log all transactions ๐Ÿ“"""
    @wraps(func)
    def wrapper(*args, **kwargs):
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        print(f"๐Ÿ“‹ [{timestamp}] Starting {func.__name__}")
        
        try:
            result = func(*args, **kwargs)
            print(f"โœ… [{timestamp}] {func.__name__} completed successfully")
            return result
        except Exception as e:
            print(f"โŒ [{timestamp}] {func.__name__} failed: {str(e)}")
            raise
    return wrapper

def validate_order(func):
    """Validate order data ๐Ÿ›ก๏ธ"""
    @wraps(func)
    def wrapper(order_data, *args, **kwargs):
        # ๐Ÿ” Check required fields
        required = ['customer_id', 'items', 'total']
        missing = [field for field in required if field not in order_data]
        
        if missing:
            raise ValueError(f"โŒ Missing required fields: {missing}")
        
        if not order_data['items']:
            raise ValueError("๐Ÿ›’ Order must contain at least one item!")
        
        if order_data['total'] <= 0:
            raise ValueError("๐Ÿ’ฐ Order total must be positive!")
        
        print("โœ… Order validation passed!")
        return func(order_data, *args, **kwargs)
    return wrapper

def discount(percentage):
    """Apply discount to order ๐Ÿท๏ธ"""
    def decorator(func):
        @wraps(func)
        def wrapper(order_data, *args, **kwargs):
            original_total = order_data['total']
            discount_amount = original_total * (percentage / 100)
            order_data['total'] = original_total - discount_amount
            order_data['discount_applied'] = percentage
            
            print(f"๐ŸŽ Applied {percentage}% discount!")
            print(f"๐Ÿ’ต Original: ${original_total:.2f} โ†’ New: ${order_data['total']:.2f}")
            
            return func(order_data, *args, **kwargs)
        return wrapper
    return decorator

# ๐ŸŽฎ Using our decorators!
@log_transaction
@validate_order
@discount(20)  # 20% off sale! ๐ŸŽ‰
def process_order(order_data):
    """Process an e-commerce order ๐Ÿ“ฆ"""
    print(f"๐Ÿ›๏ธ Processing order for customer {order_data['customer_id']}")
    print(f"๐Ÿ“ฆ Items: {len(order_data['items'])} products")
    print(f"๐Ÿ’ณ Final total: ${order_data['total']:.2f}")
    
    # Simulate processing
    order_data['status'] = 'processed'
    order_data['order_id'] = f"ORD-{datetime.now().strftime('%Y%m%d%H%M%S')}"
    
    return order_data

# ๐ŸŽฏ Try it yourself!
order = {
    'customer_id': 'CUST-123',
    'items': ['๐Ÿ“ฑ iPhone', '๐ŸŽง AirPods', 'โŒš Apple Watch'],
    'total': 1500.00
}

processed_order = process_order(order)
print(f"๐ŸŽŠ Order {processed_order['order_id']} processed successfully!")

๐ŸŽฏ Try it yourself: Add a @retry decorator that retries failed orders!

๐ŸŽฎ Example 2: Game Achievement System

Letโ€™s make it fun:

# ๐Ÿ† Achievement system with functional decorators
from functools import wraps, reduce
import time

def achievement_tracker(achievement_name, points):
    """Track player achievements ๐Ÿ†"""
    def decorator(func):
        @wraps(func)
        def wrapper(player, *args, **kwargs):
            result = func(player, *args, **kwargs)
            
            # ๐ŸŽฏ Award achievement
            if 'achievements' not in player:
                player['achievements'] = []
            
            achievement = {
                'name': achievement_name,
                'points': points,
                'timestamp': time.time(),
                'emoji': '๐Ÿ†'
            }
            
            player['achievements'].append(achievement)
            player['total_points'] = player.get('total_points', 0) + points
            
            print(f"๐ŸŽŠ Achievement unlocked: {achievement_name} (+{points} points)!")
            return result
        return wrapper
    return decorator

def combo_multiplier(multiplier):
    """Apply combo multiplier to scores ๐Ÿ”ฅ"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            result = func(*args, **kwargs)
            if isinstance(result, (int, float)):
                combo_result = result * multiplier
                print(f"๐Ÿ”ฅ Combo x{multiplier}! Score: {result} โ†’ {combo_result}")
                return combo_result
            return result
        return wrapper
    return decorator

def performance_bonus(threshold):
    """Add bonus for high performance โšก"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            start_time = time.time()
            result = func(*args, **kwargs)
            execution_time = time.time() - start_time
            
            if execution_time < threshold:
                bonus = int(100 * (threshold - execution_time))
                print(f"โšก Speed bonus! Completed in {execution_time:.3f}s (+{bonus} points)")
                return result + bonus if isinstance(result, (int, float)) else result
            return result
        return wrapper
    return decorator

# ๐ŸŽฎ Create our game functions
@achievement_tracker("First Blood", 100)
@combo_multiplier(2)
@performance_bonus(0.5)
def defeat_enemy(player, enemy_type):
    """Defeat an enemy and earn points ๐Ÿ—ก๏ธ"""
    base_points = {
        '๐ŸงŸ Zombie': 10,
        '๐Ÿ‰ Dragon': 50,
        '๐Ÿ‘น Boss': 100
    }
    
    points = base_points.get(enemy_type, 5)
    print(f"๐Ÿ’ฅ Defeated {enemy_type}! Base points: {points}")
    
    # Simulate combat time
    time.sleep(0.3)
    
    return points

# ๐ŸŽฏ Compose multiple decorators functionally
def compose(*decorators):
    """Compose multiple decorators functionally ๐ŸŽจ"""
    def decorator(func):
        return reduce(lambda f, d: d(f), reversed(decorators), func)
    return decorator

# ๐Ÿ—๏ธ Create a super-powered function
super_combo = compose(
    achievement_tracker("Combo Master", 500),
    combo_multiplier(5),
    performance_bonus(0.2)
)

@super_combo
def ultimate_attack(player):
    """Unleash ultimate attack! ๐Ÿ’ซ"""
    print("๐ŸŒŸ ULTIMATE ATTACK ACTIVATED!")
    time.sleep(0.1)  # Fast execution for bonus
    return 1000

# ๐ŸŽฎ Let's play!
player = {'name': 'PyMaster', 'total_points': 0}

# Battle sequence
score1 = defeat_enemy(player, '๐ŸงŸ Zombie')
score2 = defeat_enemy(player, '๐Ÿ‰ Dragon')
score3 = ultimate_attack(player)

print(f"\n๐Ÿ† Final Stats for {player['name']}:")
print(f"๐Ÿ’ฏ Total Points: {player['total_points']}")
print(f"๐ŸŽ–๏ธ Achievements: {len(player['achievements'])}")

๐Ÿš€ Advanced Concepts

๐Ÿง™โ€โ™‚๏ธ Functional Decorator Composition

When youโ€™re ready to level up, try this advanced pattern:

# ๐ŸŽฏ Advanced functional composition
from functools import wraps, partial
from typing import Callable, Any

def curry_decorator(decorator: Callable) -> Callable:
    """Make decorators curryable ๐Ÿ›"""
    @wraps(decorator)
    def curried(*args, **kwargs):
        if len(args) == 1 and callable(args[0]) and not kwargs:
            # Direct decoration
            return decorator(args[0])
        else:
            # Partial application
            return partial(decorator, *args, **kwargs)
    return curried

@curry_decorator
def rate_limit(func: Callable, calls: int = 1, period: float = 1.0) -> Callable:
    """Rate limit function calls ๐Ÿšฆ"""
    call_times = []
    
    @wraps(func)
    def wrapper(*args, **kwargs):
        current_time = time.time()
        
        # Remove old calls outside the period
        call_times[:] = [t for t in call_times if current_time - t < period]
        
        if len(call_times) >= calls:
            wait_time = period - (current_time - call_times[0])
            raise Exception(f"๐Ÿ›‘ Rate limit exceeded! Wait {wait_time:.1f}s")
        
        call_times.append(current_time)
        return func(*args, **kwargs)
    
    return wrapper

# ๐Ÿช„ Using curried decorators
@rate_limit(calls=3, period=10.0)
def api_call(endpoint):
    """Simulate API call ๐ŸŒ"""
    print(f"๐Ÿ“ก Calling {endpoint}")
    return f"Response from {endpoint}"

# Or use it functionally
limited_func = rate_limit(calls=2)(lambda x: x * 2)

๐Ÿ—๏ธ Monadic Decorators

For the brave developers:

# ๐Ÿš€ Monadic decorator pattern
from typing import TypeVar, Generic, Callable, Optional

T = TypeVar('T')
U = TypeVar('U')

class Maybe(Generic[T]):
    """Maybe monad for safe operations ๐Ÿ›ก๏ธ"""
    def __init__(self, value: Optional[T]):
        self._value = value
    
    def bind(self, func: Callable[[T], 'Maybe[U]']) -> 'Maybe[U]':
        if self._value is None:
            return Maybe(None)
        return func(self._value)
    
    def map(self, func: Callable[[T], U]) -> 'Maybe[U]':
        if self._value is None:
            return Maybe(None)
        return Maybe(func(self._value))
    
    @property
    def value(self) -> Optional[T]:
        return self._value

def maybe_decorator(func: Callable) -> Callable:
    """Wrap function result in Maybe monad ๐ŸŽ"""
    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
            result = func(*args, **kwargs)
            return Maybe(result)
        except Exception as e:
            print(f"โš ๏ธ Operation failed: {e}")
            return Maybe(None)
    return wrapper

@maybe_decorator
def divide(a: float, b: float) -> float:
    """Safe division ๐Ÿ”ข"""
    return a / b

# ๐ŸŽฎ Chain operations safely
result = (divide(10, 2)
          .map(lambda x: x * 2)
          .map(lambda x: x + 10)
          .bind(lambda x: divide(x, 2)))

if result.value:
    print(f"โœจ Result: {result.value}")
else:
    print("โŒ Computation failed somewhere in the chain")

โš ๏ธ Common Pitfalls and Solutions

๐Ÿ˜ฑ Pitfall 1: Losing Function Metadata

# โŒ Wrong way - metadata gets lost!
def bad_decorator(func):
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper  # ๐Ÿ˜ฐ Lost __name__, __doc__, etc.

@bad_decorator
def my_function():
    """Important documentation"""
    pass

print(my_function.__name__)  # ๐Ÿ’ฅ Prints 'wrapper', not 'my_function'!

# โœ… Correct way - preserve metadata!
from functools import wraps

def good_decorator(func):
    @wraps(func)  # ๐Ÿ›ก๏ธ Preserves function metadata
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper

@good_decorator
def my_function():
    """Important documentation"""
    pass

print(my_function.__name__)  # โœ… Prints 'my_function'
print(my_function.__doc__)   # โœ… Prints 'Important documentation'

๐Ÿคฏ Pitfall 2: Decorator Order Matters

# โŒ Wrong order - authentication happens after logging!
@log_transaction  # 2๏ธโƒฃ This runs second
@authenticate    # 1๏ธโƒฃ This runs first
def sensitive_operation():
    pass

# โœ… Correct order - authenticate first, then log
@authenticate    # 1๏ธโƒฃ Check auth first
@log_transaction # 2๏ธโƒฃ Only log if authenticated
def sensitive_operation():
    pass

# ๐Ÿ’ก Remember: decorators apply bottom-to-top!

๐Ÿ› ๏ธ Best Practices

  1. ๐ŸŽฏ Use @wraps: Always preserve function metadata
  2. ๐Ÿ“ Document Decorators: Explain what they do and when to use them
  3. ๐Ÿ›ก๏ธ Handle Exceptions: Donโ€™t let decorators hide errors
  4. ๐ŸŽจ Keep It Simple: One decorator, one responsibility
  5. โœจ Make Them Composable: Design decorators to work together
  6. ๐Ÿš€ Consider Performance: Cache when appropriate
  7. ๐Ÿงช Test Thoroughly: Test decorators in isolation

๐Ÿงช Hands-On Exercise

๐ŸŽฏ Challenge: Build a Caching System

Create a functional caching system with these features:

๐Ÿ“‹ Requirements:

  • โœ… LRU (Least Recently Used) cache with size limit
  • ๐Ÿท๏ธ TTL (Time To Live) support for cache entries
  • ๐Ÿ‘ค Cache statistics (hits, misses, evictions)
  • ๐Ÿ“Š Cache warming capability
  • ๐ŸŽจ Decorator parameters for configuration

๐Ÿš€ Bonus Points:

  • Add cache invalidation patterns
  • Implement distributed cache support
  • Create cache performance metrics
  • Add async function support

๐Ÿ’ก Solution

๐Ÿ” Click to see solution
# ๐ŸŽฏ Advanced caching system with functional approach!
from functools import wraps, lru_cache
from datetime import datetime, timedelta
from collections import OrderedDict
import asyncio
from typing import Any, Callable, Optional

class FunctionalCache:
    """Functional caching system ๐Ÿš€"""
    
    def __init__(self, maxsize: int = 128, ttl: Optional[float] = None):
        self.maxsize = maxsize
        self.ttl = ttl
        self.cache = OrderedDict()
        self.stats = {
            'hits': 0,
            'misses': 0,
            'evictions': 0
        }
    
    def get(self, key: Any) -> Optional[Any]:
        """Get item from cache ๐Ÿ“ฆ"""
        if key in self.cache:
            value, expiry = self.cache[key]
            
            if expiry and datetime.now() > expiry:
                # โฐ Expired entry
                del self.cache[key]
                return None
            
            # ๐ŸŽฏ Move to end (LRU)
            self.cache.move_to_end(key)
            self.stats['hits'] += 1
            return value
        
        self.stats['misses'] += 1
        return None
    
    def set(self, key: Any, value: Any) -> None:
        """Set item in cache ๐Ÿ’พ"""
        expiry = None
        if self.ttl:
            expiry = datetime.now() + timedelta(seconds=self.ttl)
        
        if key in self.cache:
            # Update existing
            self.cache.move_to_end(key)
        elif len(self.cache) >= self.maxsize:
            # ๐Ÿ—‘๏ธ Evict oldest
            self.cache.popitem(last=False)
            self.stats['evictions'] += 1
        
        self.cache[key] = (value, expiry)
    
    def invalidate(self, pattern: Optional[Callable] = None) -> int:
        """Invalidate cache entries ๐Ÿงน"""
        if pattern is None:
            # Clear all
            count = len(self.cache)
            self.cache.clear()
            return count
        
        # Clear matching pattern
        keys_to_remove = [k for k in self.cache if pattern(k)]
        for key in keys_to_remove:
            del self.cache[key]
        return len(keys_to_remove)
    
    def get_stats(self) -> dict:
        """Get cache statistics ๐Ÿ“Š"""
        total = self.stats['hits'] + self.stats['misses']
        hit_rate = self.stats['hits'] / total if total > 0 else 0
        
        return {
            **self.stats,
            'size': len(self.cache),
            'hit_rate': f"{hit_rate * 100:.1f}%",
            'capacity': f"{len(self.cache)}/{self.maxsize}"
        }

def cached(maxsize: int = 128, ttl: Optional[float] = None):
    """Functional cache decorator ๐ŸŽจ"""
    cache = FunctionalCache(maxsize=maxsize, ttl=ttl)
    
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def sync_wrapper(*args, **kwargs):
            # ๐Ÿ”‘ Create cache key
            key = (args, tuple(sorted(kwargs.items())))
            
            # ๐Ÿ“ฆ Check cache
            result = cache.get(key)
            if result is not None:
                print(f"๐Ÿ’ซ Cache hit for {func.__name__}!")
                return result
            
            # ๐ŸŽฏ Execute function
            result = func(*args, **kwargs)
            cache.set(key, result)
            return result
        
        @wraps(func)
        async def async_wrapper(*args, **kwargs):
            # ๐Ÿ”‘ Create cache key
            key = (args, tuple(sorted(kwargs.items())))
            
            # ๐Ÿ“ฆ Check cache
            result = cache.get(key)
            if result is not None:
                print(f"๐Ÿ’ซ Cache hit for {func.__name__}!")
                return result
            
            # ๐ŸŽฏ Execute async function
            result = await func(*args, **kwargs)
            cache.set(key, result)
            return result
        
        # ๐ŸŽ Add cache control methods
        wrapper = async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper
        wrapper.cache = cache
        wrapper.invalidate = cache.invalidate
        wrapper.stats = cache.get_stats
        
        return wrapper
    
    return decorator

# ๐ŸŽฎ Test our caching system!
@cached(maxsize=10, ttl=5.0)
def expensive_calculation(n: int) -> int:
    """Simulate expensive calculation ๐Ÿงฎ"""
    print(f"๐Ÿ”ง Computing factorial of {n}...")
    result = 1
    for i in range(1, n + 1):
        result *= i
    return result

@cached(maxsize=5)
async def fetch_data(url: str) -> str:
    """Simulate async data fetching ๐ŸŒ"""
    print(f"๐Ÿ“ก Fetching from {url}...")
    await asyncio.sleep(1)  # Simulate network delay
    return f"Data from {url}"

# ๐ŸŽฏ Demo time!
print("๐Ÿš€ Testing synchronous caching:")
print(f"Result: {expensive_calculation(5)}")  # Miss
print(f"Result: {expensive_calculation(5)}")  # Hit!
print(f"Result: {expensive_calculation(6)}")  # Miss

print(f"\n๐Ÿ“Š Cache stats: {expensive_calculation.stats()}")

# ๐Ÿงน Invalidate specific entries
expensive_calculation.invalidate(lambda key: key[0][0] > 5)

print("\n๐ŸŒ Testing async caching:")
async def test_async():
    await fetch_data("api.example.com")  # Miss
    await fetch_data("api.example.com")  # Hit!
    print(f"๐Ÿ“Š Async cache stats: {fetch_data.stats()}")

# Run async test
asyncio.run(test_async())

๐ŸŽ“ Key Takeaways

Youโ€™ve learned so much! Hereโ€™s what you can now do:

  • โœ… Create functional decorators with confidence ๐Ÿ’ช
  • โœ… Compose decorators for powerful combinations ๐Ÿ›ก๏ธ
  • โœ… Apply functional principles to decorator design ๐ŸŽฏ
  • โœ… Debug decorator issues like a pro ๐Ÿ›
  • โœ… Build reusable decorator libraries with Python! ๐Ÿš€

Remember: Decorators are just functions that transform functions. Keep them simple, pure, and composable! ๐Ÿค

๐Ÿค Next Steps

Congratulations! ๐ŸŽ‰ Youโ€™ve mastered decorators with a functional approach!

Hereโ€™s what to do next:

  1. ๐Ÿ’ป Practice with the caching exercise above
  2. ๐Ÿ—๏ธ Build a decorator library for your projects
  3. ๐Ÿ“š Explore functools and decorator modules
  4. ๐ŸŒŸ Share your decorator creations with the community!

Remember: Every Python expert started with simple decorators. Keep experimenting, keep learning, and most importantly, have fun with functional programming! ๐Ÿš€


Happy decorating! ๐ŸŽ‰๐Ÿš€โœจ